Abstract

Magnetic resonance imaging (MRI) provides unique information about the internal structure and function of living organisms in a non-invasive way. The use of conventional proton MRI for the observation of real-time metabolism is hampered by the dominant signals of water and fat, which are abundant in living organisms. Heteronuclear MRI in conjunction with the hyperpolarization methods does not encounter this issue. In this work, we polarized 15N nuclei of [15N1]fampridine (a drug used for the treatment of multiple sclerosis) to the level of 4% in nuclear magnetic resonance (NMR) experiments and 0.7% in MRI studies using spin-lock-induced crossing combined with signal amplification by reversible exchange. Consequently, three-dimensional 15N MRI of the hyperpolarized 15N-labeled drug was acquired in 0.1 s with a signal-to-noise ratio of 70. In addition, the NMR signal enhancements for 15N-enriched fampridine and fampridine with a natural abundance of 15N nuclei were compared and an explanation for their difference was proposed.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call