Abstract
This study addresses subseasonal variations of oceanic evaporation E over the North Pacific during winter and the connection with the cold air surges (CASs) and atmospheric water vapor transport using the OAFlux and ERA-Interim daily data. By performing an empirical orthogonal function (EOF) analysis, two dominant modes of subseasonal evaporation anomaly E′ are identified: a zonal wave train–like pattern (EOF1) and an east negative–west positive dipolar pattern (EOF2) in the midlatitude basin. Further analyses yield the following conclusions. 1) The Siberian high (SH)-related CAS has a crucial role in generation of the EOF1 mode of E′. When the dry and cold air mass passes the region of the warm Kuroshio and its extension [Kuroshio–Oyashio Extension (KOE)], the increased air–sea temperature and moisture differences and intensified wind speed lead to the above-normal oceanic E, and vice versa. 2) The Aleutian low (AL)-related CAS contributes to the EOF2 mode of E′. The intensified AL transports a dramatically colder and drier air mass toward the KOE region and a slightly warmer and wetter one toward the west coast of North America, leading to the east negative–west positive structure of E′ in the midlatitude basin. 3) A quasi-linear relationship exists between E′ and divergent water vapor transport anomalies over the KOE region. Positive (negative) E′ is generally accompanied by anomalous vapor source (sink). 4) The divergent water vapor transport anomalies associated with the two EOFs are preliminarily decided by their individual lower-level wind field anomalies and second by the meridional inhomogeneity of subseasonal specific humidity anomalies. Hydroclimate effects on precipitation over the pan–North Pacific region are also discussed.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.