Abstract

AbstractAntarctic sea ice concentration (SIC) prediction at seasonal scale has been documented, but a gap remains at subseasonal scale (1–8 weeks) due to limited understanding of ice‐related physical mechanisms. To overcome this limitation, we developed a deep learning model named Sea Ice Prediction Network (SIPNet) that can predict SIC without the need to account for complex physical processes. Compared to mainstream dynamical models like European Centre for Medium‐Range Weather Forecasts, National Centers for Environmental Prediction, and Seamless System for Prediction and Earth System Research developed at Geophysical Fluid Dynamics Laboratory, as well as a relatively advanced statistical model like the linear Markov model, SIPNet outperforms them all, effectively filling the gap in subseasonal Antarctic SIC prediction capability. SIPNet results indicate that autumn SIC variability contributes the most to sea ice predictability, whereas spring contributes the least. In addition, the Weddell Sea displays the highest sea ice predictability, while predictability is low in the West Pacific. SIPNet can also capture the signal of ENSO and SAM on sea ice.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.