Abstract
AbstractStrongly coupled data assimilation (SCDA), such as using atmospheric observations to update ocean analyses, is critical for properly initializing Earth System models to predict subseasonal to decadal timescales. We show that a Kalman filter with a linear emulator of the coupled dynamics can be used to efficiently assimilate observations with SCDA. A linear inverse model (LIM), trained on 25 years of Climate Forecast System Reanalysis gridded data, is used to assimilate observations daily during an independent 7‐year period. SCDA sea‐surface temperature (SST) analysis errors are reduced over 20% in global‐mean mean‐squared error relative to a control experiment where only SST observations are assimilated with an SST LIM. The analysis improvements enhance forecast skill for leads of at least 50 days. In contrast, extratropical Northern Hemisphere 2 m air temperature forecast errors increase for coupled data assimilation in these experiments, despite reduction during the training period.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.