Abstract

AbstractA new instrument developed for monitoring acceleration, tilt, and pressure at the ocean floor also measures sediment temperature 1 m below the seafloor. Four deployments have been completed and connected to the Ocean Networks Canada cabled observatory, one on the inner Cascadia accretionary prism, two on the outer prism, and one on the sedimented eastern flank of the Juan de Fuca Ridge. Relative amplitudes and phases of temperature variations measured at the seafloor and in the sediment at periods greater than roughly 1 week constrain the thermal diffusivity of the upper meter of subseafloor sediment to be 4 × 10−7 m2/s. Clear ±0.1‐mK amplitude tidal sediment temperature variations are also resolved. These are too large and regular to be the consequence of downward thermal diffusion from the seafloor and too large to be the consequence of fluid migration driven along the sediment geotherm by poroelastic response to tidal loading. The variations are closely correlated with tidal pressure variations, however, and we infer that these temperature signals reflect adiabatic heating and cooling. The lapse rates inferred from the observations at two of the sites are close to the values for seawater but significantly higher than predicted for a mixture that includes sediment grains. The values observed by both instruments at the outer prism site, located near methane‐bearing‐fluid springs, are particularly high, 20% higher than predicted for a sediment‐seawater mixture. This discrepancy could be reconciled if free gas or methane hydrate were present within the pore volume.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.