Abstract
ABSTRACT. Most proposed subsampling and resampling methods in the literature assume stationary data. In many empirical applications, however, the hypothesis of stationarity can easily be rejected. In this paper, we demonstrate that moment and variance estimators based on the subsampling methodology can also be employed for different types of non-stationarity data. Consistency of estimators are demonstrated under mild moment and mixing conditions. Rates of convergence are provided, giving guidance for the appropriate choice of subshape size. Results from a small simulation study on finite-sample properties are also reported.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.