Abstract

Quantifying the impact of input estimation errors in data-driven stochastic simulation often encounters substantial computational challenges due to the entanglement of Monte Carlo and input data noises. In this paper, we propose a subsampling framework to bypass this computational bottleneck, by leveraging the form of the output variance and its estimation error in terms of data size and sampling effort. Compared with standard subsampling in the literature, our motivation is distinctly to reduce the sampling complexity of the two-layer bootstrap required in simulation uncertainty quantification. Compared with standard bootstraps, our subsampling approach provably and experimentally leads to more accurate variance and confidence interval estimations under the same amount of simulation budget.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call