Abstract

In this article, we revisit a time series model introduced by MCElroy and Politis (2007a) and generalize it in several ways to encompass a wider class of stationary, nonlinear, heavy‐tailed time series with long memory. The joint asymptotic distribution for the sample mean and sample variance under the extended model is derived; the associated convergence rates are found to depend crucially on the tail thickness and long memory parameter. A self‐normalized sample mean that concurrently captures the tail and memory behaviour, is defined. Its asymptotic distribution is approximated by subsampling without the knowledge of tail or/and memory parameters; a result of independent interest regarding subsampling consistency for certain long‐range dependent processes is provided. The subsampling‐based confidence intervals for the process mean are shown to have good empirical coverage rates in a simulation study. The influence of block size on the coverage and the performance of a data‐driven rule for block size selection are assessed. The methodology is further applied to the series of packet‐counts from ethernet traffic traces.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.