Abstract

Abstract This paper deals with subsampled spectral gradient methods for minimizing finite sums. Subsample function and gradient approximations are employed in order to reduce the overall computational cost of the classical spectral gradient methods. The global convergence is enforced by a nonmonotone line search procedure. Global convergence is proved provided that functions and gradients are approximated with increasing accuracy. R-linear convergence and worst-case iteration complexity is investigated in case of strongly convex objective function. Numerical results on well known binary classification problems are given to show the effectiveness of this framework and analyze the effect of different spectral coefficient approximations arising from the variable sample nature of this procedure.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.