Abstract

Let D be a principal ideal domain (PID), I be an ideal of D, and X be an indeterminate over D. Let [D;I][X] be the subring of the power series ring consisting of all power series in such that for all large i. By definition, the polynomial ring and the power series ring are special cases of when and I = D, respectively. In this article, we investigate the ring in the case I is a nonzero proper ideal of D. We prove that R is a two-dimensional non-Noetherian ring. For each maximal ideal P of D, it is shown that is a height-one prime ideal of R. The set of units of R is given and the spectrum of R is also described. Unlike the power series ring the ring R is not a unique factorization domain (UFD). Furthermore, when I is a nonzero prime ideal, R does not satisfy both ACCP and the atomic property. In obtaining results on R, we introduce and sometimes use results on the ring RS , where I = dD with and Closely related to R, the ring RS is shown to be a Noetherian UFD with Krull dimension at most two. Moreover, RS has Krull dimension two exactly when I is not contained in the Jacobson radical of D; otherwise RS is a PID.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call