Abstract

This paper considers the lattice of subquasivarieties of a regular variety. In particular we show that if V is a strongly irregular variety that is minimal as a quasivariety, then the smallest quasivariety containing both V and SI (the variety of semilattices) is never equal to the regularization V of V.We use this result to describe the lattice of subquasivarieties of V in several special but quite common, cases and give a number of applications and examples.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.