Abstract

Gaussian normal basis (GNB) of the even-type is popularly used in elliptic curve cryptosystems. Efficient GNB multipliers could be realised by Toeplitz matrix-vector decomposition to realise subquadratic space complexity architectures. In this study, Dickson polynomial representation is proposed as an alternative way to represent an GNB of characteristic two. The authors have derived a novel recursive Dickson–Karatsuba decomposition to achieve a subquadratic space-complexity parallel GNB multiplier. By theoretical analysis, it is shown that the proposed subquadratic multiplier saves about 50% bit-multiplications compared with the corresponding subquadratic GNB multiplication using Toeplitz matrix-vector product approach.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.