Abstract
We tested whether the vulnerability of somatostatin (SST) neurons in senile dementia of the Alzheimer type (SDAT) depended upon their co-localization with neuropeptide Y (NPY). Density estimates of SST28- and NPY-immunoreactive neurons and percentage of double-labeled SST-NPY neurons were obtained in the cortex (areas 9 and 25) and the bed nucleus of stria terminalis (BST), in 6 SDAT and 5 control cases. Counts of senile plaques (SP) and neurofibrillary tangles (NFT) were done on thioflavin S stains. In both cortical areas, a decrease in the density of SST28-IR neurons was found in SDAT cases (−60% in area 25 and −80% in area 9), whereas density of NPY-IR neurons was unchanged. Accordingly, the proportion of single-labeled SST neurons decreased; this decrease was significantly correlated with SP ( r = −0.89, P < 0.001). We conclude that single SST-IR neurons, in cortical layers II–III, and V, are preferentially lost relative to co-localized SST-NPY neurons. In the BST, no significant reduction of SST-IR, NPY-IR neurons nor of the percentage of single labeled SST neurons was found, despite the presence of SP. Thus one subpopulation of SST neurons, defined by associated neurochemical characters (not co-localized with NPY nor with NADPH diaphorase) and by topography (cortical layers III and V) appears to be particularly vulnerable in SDAT. The potential importance of their position in neural circuitry is emphasized.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.