Abstract

Mechanical allodynia, a cardinal symptom of persistent pain, is associated with the unmasking of usually blocked local circuits within the superficial spinal or medullary dorsal horn (MDH) through which low-threshold mechanical inputs can gain access to the lamina I nociceptive output neurons. Specific interneurons located within inner lamina II (IIi) and expressing the gamma isoform of protein kinase C (PKCγ⁺) have been shown to be key elements for such circuits. However, their morphologic and electrophysiologic features are still unknown. Using whole-cell patch-clamp recordings and immunohistochemical techniques in slices of adult rat MDH, we characterized such lamina IIi PKCγ⁺ interneurons and compared them with neighboring PKCγ⁻ interneurons. Our results reveal that PKCγ⁺ interneurons display very specific activity and response properties. Compared with PKCγ⁻ interneurons, they exhibit a smaller membrane input resistance and rheobase, leading to a lower threshold for action potentials. Consistently, more than half of PKCγ⁺ interneurons respond with tonic firing to step current. They also receive a weaker excitatory synaptic drive. Most PKCγ⁺ interneurons express Ih currents. The neurites of PKCγ⁺ interneurons arborize extensively within lamina IIi, can spread dorsally into lamina IIo, but never reach lamina I. In addition, at least 2 morphologically and functionally different subpopulations of PKCγ⁺ interneurons can be identified: central and radial PKCγ⁺ interneurons. The former exhibit a lower membrane input resistance, rheobase and, thus, action potential threshold, and less PKCγ⁺ immunoreactivity than the latter. These 2 subpopulations might thus differently contribute to the gating of dorsally directed circuits within the MDH underlying mechanical allodynia.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.