Abstract

AbstractHeterogeneous halogen chemistry plays a dominant role in driving changes in polar chemical composition and ozone depletion. Activation of halogens outside the polar regions may result in depletion of local ozone, along with changes in the chemical budgets of various species in the lower stratosphere (LS). In this study, the means and distributions of NO2 measurements from the Stratospheric Aerosol and Gas Experiment III (SAGE3m) are compared to simulations from a coupled climate‐chemistry model, in order to better characterize and quantify subpolar heterogeneous halogen chemistry. NO2 abundances from a simulation with heterogeneous chemistry are drawn from the same distribution as the SAGE3m observations, while the NO2 distribution is different in a simulation without heterogeneous chemistry. Results indicate that heterogeneous chemistry plays a significant role in determining the chemical composition of the subpolar LS in austral spring and show how analysis of distribution functions can provide useful insights into chemical processes.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.