Abstract

Recognition of small patterns covering only a few pixels in an image cannot be done by conventional recognition methods. A theoretically new pattern recognition method has been developed for undersampled objects which are (much) smaller than the window-size of a picture element (pixel), i.e. these objects are of subpixel size. The proposed statistical technique compares the gray-level histogram of the patterns of a set of scanned objects to be examined with the (calculated) gray-level densities of different (in shape or size) possible objects, and the recognition is based on this comparison. This method does not need high-precision movement of scanning sensors or any additional hardware. Moreover, the examined patterns should be randomly distributed on the screen, or a random movement of camera is (or target or both are) needed. Effects of noise are analysed, and filtering processes are suggested in the histogram domain. Several examples of different object shapes (triangle, rectangle, square, circle, curving lines, etc.) are presented through simulations and experiments. A number of possible application areas are suggested, including astronomy, line-drawing analysis and industrial laser measurements.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.