Abstract
Seven Landsat Multispectral Scanner (MSS) scenes in central Africa were coregistered with 8 km resolution data from the 1987 AVHRR Pathfinder Land data set. Percent forest cover in each 8 km grid cell was derived from the classified MSS scenes. Linear relationships between percent forest cover and 30 multitemporal metrics derived from all AVHRR optical and thermal channels were determined. Correlations were strongest for the mean annual normalized difference vegetation index (NDVI) and mean annual brightness temperature (AVHRR Channel 3) and weakest for those metrics, besides NDVI, based on near-infrared reflectances (AVHRR Channel 2). The relationships were used to estimate percent forest cover in various locations in the study area using multiple linear regression and regression trees. Overall, the multiple linear regression provided more accurate results. Predicted percent forest cover estimates were within 20% of the “actual” percent forest cover (derived from the MSS data) for approximately 90% of the grid cells. The RMS error for the prediction was 12% forest cover. RMS errors above 18% forest cover were obtained when using AVHRR data from a single month to derive predictive relationships. The results demonstrate that multitemporal data reflecting vegetation phenology can be used to estimate subpixel forest cover at coarse spatial resolutions.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.