Abstract

Spin relaxation times in GaAsxSb1−x quantum wells are measured at 295 K using time-resolved circular dichroism induced by 1.5 μm, 100 fs pulses. Values of 1.03 and 0.84 ps are obtained for samples with x=0 and 0.188, respectively. These times are >5 times shorter than those in InGaAs and InGaAsP wells with similar band gaps. The shorter relaxation times are attributed to the larger spin-orbit conduction-band splitting in the Ga(As)Sb system, consistent with the D’yakonov–Perel theory of spin relaxation [M. I. D’yakonov and V. I. Perel, Sov. Phys. JETP 38, 177 (1974)]. Our results indicate the feasibility of engineering an all-optical, polarization switch at 1.5 μm with response time <250 fs.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.