Abstract

Subpicosecond, high-brightness excimer laser systems are being used to explore the interaction of intense coherent ultraviolet radiation with matter. Applications of current systems include generation of picosecond x-ray pulses, investigation of possible x-ray laser pumping schemes, studies of multiphoton phenomena in atomic species, and time-resolved photochemistry. These systems, based on the amplification of subpicosecond pulses in small aperture (/approximately/1 cm/sup 2/) XeCl or KrF amplifiers, deliver focal spot intensities of /approximately/10/sup 17/ W/cm/sup 2/. Scaling to higher intensities, however, will require an additional large aperture amplifier which preserves near-diffraction-limited beam quality and subpicosecond pulse duration. We describe here both a small aperture KrF system which routinely provides intensities >10/sup 17/ W/cm/sup 2/ to several experiments, and a large aperture XeCl system designed to deliver /approximately/1 J subpicosecond pulses and yield intensities on target in excess of 10/sup 19/W/cm/sup 2/. We also discuss the effects of two-photon absorption on large-aperture, high-brightness excimer lasers. 4 refs., 2 figs.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call