Abstract

The aim of this study was to obtain more information about the initial biological events around RF magnetron sputtered calcium phosphate (Ca-P) coatings. Therefore, uncoated and coated disks were inserted subperiosteal into the tibia of a goat. The coatings were deposited on commercially pure titanium. The thickness of the coating was 0.1 or 2.0 microm. All the as-sputtered coatings were subjected to an additional heat treatment for 2 h at 500 degrees C. After 1 and 3 weeks of implantation the experimental disks were retrieved and prepared for histological and physicochemical analysis. The histological results demonstrated that the periosteum covered the specimens after both implantation periods. In between the periosteum and implant an acellular layer and a collagen matrix was observed. Energy dispersive spectrometry revealed that the acellular layer consisted of C, Ca, and P ions for the 0.1 microm thick Ca-P coatings. The 2 microm thick Ca-P coatings also showed the presence of sulfate ions in this layer. Only organic material was found on the titanium disks. Further, SEM showed that even after 3-week implantation, a substantial thickness of both coatings was still maintained. Thin film X-ray diffraction demonstrated that after both implantation periods, the CaP-0.1 coating was still present. FTIR of the retrieved specimens demonstrated on the coated disks the formation of additional carbonate apatite (CO3-AP) associated with an organic phase (NH2 groups). On basis of these findings we conclude that our experimental approach is very suitable for the investigation of the healing process around Ca-P coatings. Further, we again demonstrated that the initial interfacial response to Ca-P materials differs from titanium.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.