Abstract

In the present paper, a facile hydrothermal synthesis was successfully used to obtain a novel SubPhthalocyanine/Nickel molybdate (SubPc-Br/NiMoO4) composite electrode material for a higher-performance super-capacitor. SEM and XRD investigations revealed that SubPc-Br particles were uniformly dispersed on the surface of NiMoO4 microspheres and kept the crystal formation of NiMoO4 during the combination of SubPc-Br and NiMoO4, giving the possibility to obtain high power density. The excellent pseudo-capacitance properties of SubPc-Br/NiMoO4 were also confirmed by a series of electrochemical experiments and showed that SubPc-Br significantly enhanced the redox strength and charge transfer characteristics of the NiMoO4. The as-prepared electrode had a high specific capacitance of 1292 F g−1 at a scan rate of 1 mV s−1. Additionally, in comparison with a separate NiMoO4, the cycle stability of the SubPc-Br/NiMoO4 super-capacitor is improved by 12.9% after 1000 cycles. The enhanced performances could be mainly attributed to the unique nanostructure and a larger contact area of SubPc-Br/NiMoO4. The materials obtained using this technique and the unique properties of cycle stability are attractive. This technique has an increased potential to enlarge the applicability of the electrochemical industry.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.