Abstract
Abstract In this paper we study subordination principles for fractional differential equations of Sobolev type in Banach space. With the help of the theory of Sobolev type resolvent families (known also as propagation family) as well as these subordination principles, we obtain the existence of mild solutions for this kind of equations. We study simultaneously the case 0 < α < 1 and 1 < α < 2 for the Caputo and Riemann-Liouville fractional derivatives.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.