Abstract

We reconstruct millennial-scale variations in sea surface hydrography and deep water flow in the northwestern subtropical Atlantic (Ocean Drilling Program Leg 172 Sites 1056 and 1063) with a focus on Marine Isotope Stage (MIS) 9. Together with published records from this region, the new data also afford a longer-term perspective on millennial-scale changes in meridional overturning circulation spanning two full interglacial intervals (MIS 9 and 11) as well as two full glacial intervals (MIS 10 and 12). Planktic foraminiferal δ 18O values indicate relatively stable conditions during the peak warmth of MIS 9, but three large cold excursions disrupt the otherwise smooth transition toward glacial MIS 8. There is no unique response in the Site 1063 benthic foraminiferal δ 13C values that would suggest a concomitant decrease in the relative flux of NADW during these events. Similarly, there is no persistent correlation between millennial-scale variations in surface and deep water hydrography over the entire MIS 8–13 interval. While millennial-scale variations at the sea surface are most pronounced during glacial intervals (and the transitions toward glacial intervals), millennial-scale variations in the deep water hydrography tend to be largest during the warm periods. This observation supports that rapid changes in thermohaline circulation are sensitive to driving forces other than those directly related to ice sheet size. Time series analysis shows that spectral power in the benthic foraminiferal δ 13C record contains periodicities related to the second (∼10 kyr) and fourth harmonics (∼5 kyr) of precession in this record (∼20 kyr) pointing to the importance of tropical processes.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call