Abstract

ABSTRACT It is increasingly appreciated that U1 snRNP transcriptomically suppresses the usage of intronic polyadenylation site (PAS) of mRNAs, an outstanding question is why frequently used PASs are not suppressed. Here we found that U1 snRNP could be transiently associated with sequences upstream of actionable PASs in human cells, and RNA–RNA interaction might contribute to the association. By focusing on individual PAS, we showed that the stable assembly of U1 snRNP near PAS might be generally required for U1 inhibition of mRNA 3ʹ processing. Therefore, actionable PASs that often lack optimal U1 snRNP docking site nearby is free from U1 inhibitory effect. Consistently, natural 5ʹ splicing site (5ʹ-SS) is moderately enriched ~250 nt upstream of intronic PASs whose usage is sensitive to functional knockdown of U1 snRNA. Collectively, our results provided an insight into how U1 snRNP selectively inhibits the usage of PASs in a cellular context, and supported a prevailing model that U1 snRNP scans pre-mRNA through RNA–RNA interaction to find a stable interaction site to exercise its function in pre-mRNA processing, including repressing the usage of cryptic PASs.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.