Abstract

This paper proposes a novel strategy to design a suboptimal attitude tracking control law for a near-space hypersonic vehicle (NSHV) based on the Koopman operator and stable manifold theory. The nonlinear vector field of the NSHV attitude model is locally Lipschitz continuous and can be approximated by a high-dimensional linear system over a compact set. Linear and nonlinear parts of the attitude dynamics are determined based on this system. Subsequently, the stable manifold theory is applied to determine the unconstrained approximated optimal control law that is used to further consider the control input constraints of the NSHV attitude model. The suboptimality of the control law is analyzed, and the local exponential stability of the closed-loop system with input constraints is proven. Furthermore, the eigenvalues for the closed-loop nonlinear attitude error dynamics are analyzed. After the control input saturation, the nonlinear closed-loop error dynamics of the NSHV can be approximated by a high-dimensional linear system with a minimal dimension. The eigenvalues of this linear system indicate the stability and time response characteristics of the attitude error dynamics of the NSHV. The numerical simulation results demonstrate the effectiveness and suboptimality of the proposed attitude tracking control law and workflow of the eigenvalue analysis.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.