Abstract

Motivated by a need to reduce energy consumption in wireless sensors for vibration-based structural health monitoring (SHM) associated with data acquisition and transmission, this paper puts forth a novel approach for undertaking operational modal analysis (OMA) and damage localization relying on compressed vibrations measurements sampled at rates well below the Nyquist rate. Specifically, non-uniform deterministic sub-Nyquist multi-coset sampling of response acceleration signals in white noise excited linear structures is considered in conjunction with a power spectrum blind sampling/estimation technique which retrieves/samples the power spectral density matrix from arrays of sensors directly from the sub-Nyquist measurements (i.e., in the compressed domain) without signal reconstruction in the time-domain and without posing any signal sparsity conditions. The frequency domain decomposition algorithm is then applied to the power spectral density matrix to extract natural frequencies and mode shapes as a standard OMA step. Further, the modal strain energy index (MSEI) is considered for damage localization based on the mode shapes extracted directly from the compressed measurements. The effectiveness and accuracy of the proposed approach is numerically assessed by considering simulated vibration data pertaining to a white-noise excited simply supported beam in healthy and in 3 damaged states, contaminated with Gaussian white noise. Good accuracy is achieved in estimating mode shapes (quantified in terms of the modal assurance criterion) and natural frequencies from an array of 15 multi-coset devices sampling at a 70% slower than the Nyquist frequency rate for SNRs as low as 10db. Damage localization of equal level/quality is also achieved by the MSEI applied to mode shapes derived from noisy sub-Nyquist (70% compression) and Nyquist measurements for all damaged states considered. Overall, the furnished numerical results demonstrate that the herein considered sub-Nyquist sampling and multi-sensor power spectral density estimation techniques coupled with standard OMA and damage detection approaches can achieve effective SHM from significantly fewer noisy acceleration measurements.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.