Abstract
We have demonstrated subnanometric stabilization of tip-enhanced optical microscopy under ambient condition. Time-dependent thermal drift of a plasmonic metallic tip was optically sensed at subnanometer scale, and was compensated in real-time. In addition, mechanically induced displacement of the tip, which usually occurs when the amount of tip-applied force varies, was also compensated in situ. The stabilization of tip-enhanced optical microscopy enables us to perform long-time and robust measurement without any degradation of optical signal, resulting in true nanometric optical imaging with high reproducibility and high precision. The technique presented is applicable for AFM-based nanoindentation with subnanometric precision.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.