Abstract
Summary Hybrid multi-metallic nanocatalysts have attracted increasing attention because of the synergistic effect of metal species and considerably improved catalytic performance, but they often suffer from severe sintering and poor stability. Here, we show a facile strategy for preparing subnanometric hybrid bimetallic clusters Pd-M(OH) 2 (M = Ni, Co) within silicalite-1 (S-1) zeolite via a hydrothermal synthesis method. The hybrid bimetallic nanocatalysts exhibit excellent shape-selective catalytic performance and superior thermal stability. The incorporation of secondary Ni(OH) 2 species in S-1 can considerably increase the catalytic activity of the Pd nanoclusters for the dehydrogenation of formic acid (FA) as a result of the electron-enriched Pd surface and bimetallic interfacial effect. Notably, the 0.8Pd0.2Ni(OH) 2 @S-1 catalyst affords the highest initial turnover frequency value, up to 5,803 hr −1 toward complete FA decomposition without any additives at 60°C. The superior catalytic properties and excellent stability of the subnanometric hybrid bimetallic clusters confined in zeolites create new prospects for their practical high-performance catalytic application.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.