Abstract

High-resolution nanoparticle sensing is very important, and many schemes have been proposed to achieve this goal. Circular nanocavities in which surface plasmon polariton (SPP) whispering gallery mode (WGM) resonances were excited were designed to sense particles of ultra-small size and with high resolution. Localized surface plasmon resonances (LSPRs) were excited when a metal particle was set in the circular cavity. The SPP WGM split into symmetric mode (SM) and antisymmetric mode (ASM) due to the LSPRs scattering into the SPPs. The strong coupling between SM resonance and LSPRs generated positive and opposite modes, which were sensitive to the variation in nanoparticle size and position. Even a small nanometer-sized metal particle introduced LSPRs and produced mode splitting. The WGM mode splitting induced by LSPRs reduced the sensing limit. The simulation results show that 1 nm changes in nanoparticle radius and position led to SM 11.8 nm and 10.2 nm wavelength shifts, respectively. This means that variations of 0.09 nm in size and 0.1 nm in position can be sensed with a 1 nm spectral resolution. The strong coupling between SPP WGM and LSPRs can be applied to sense at a subnanometer resolution.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.