Abstract

A subnanometer resolution displacement sensor based on a grating interferometric cavity with intensity compensation and phase modulation is proposed and experimentally demonstrated in this paper. The grating interferometric cavity is composed of a frequency-stabilized laser source, a diffraction grating, and a mirror. To realize a subnanometer resolution, the intensity compensation and phase modulation technique are introduced, which are achieved by an intensity compensation light path, three closed placed photodetectors, a processing circuit and a piezoelectric ceramic transducer, and a lock-in amplifier. The intensity compensation technique can improve the stability of the output intensity signal greatly while the phase modulation technique can increase the signal-to-noise ratio dramatically. The detected signal is intensity modulated and processed by a particular arithmetic circuit. Experimental results indicate that the sensitivity of this displacement sensor is 44.75 mV/nm and the highest resolution can reach 0.017 nm, which is 27 times better than the one without intensity compensation and phase modulation. As a high-performance sensor with immunity to electromagnetic interference, this displacement sensor has potential to be used in nanoscience and technology.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.