Abstract

Submodular function maximization is a central problem in combinatorial optimization, generalizing many important NP-hard problems including max cut in digraphs, graphs, and hypergraphs; certain constraint satisfaction problems; maximum entropy sampling; and maximum facility location problems. Our main result is that for any k ≥ 2 and any ε > 0, there is a natural local search algorithm that has approximation guarantee of 1/(k + ε) for the problem of maximizing a monotone submodular function subject to k matroid constraints. This improves upon the 1/(k + 1)-approximation of Fisher, Nemhauser, and Wolsey obtained in 1978 [Fisher, M., G. Nemhauser, L. Wolsey. 1978. An analysis of approximations for maximizing submodular set functions—II. Math. Programming Stud. 8 73–87]. Also, our analysis can be applied to the problem of maximizing a linear objective function and even a general nonmonotone submodular function subject to k matroid constraints. We show that, in these cases, the approximation guarantees of our algorithms are 1/(k − 1 + ε) and 1/(k + 1 + 1/(k − 1) + ε), respectively. Our analyses are based on two new exchange properties for matroids. One is a generalization of the classical Rota exchange property for matroid bases, and another is an exchange property for two matroids based on the structure of matroid intersection.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.