Abstract

We consider the problem of maximizing a nonnegative submodular set function $f:2^N \rightarrow {\mathbb R}_+$ over a ground set $N$ subject to a variety of packing-type constraints including (multiple) matroid constraints, knapsack constraints, and their intersections. In this paper we develop a general framework that allows us to derive a number of new results, in particular, when $f$ may be a nonmonotone function. Our algorithms are based on (approximately) maximizing the multilinear extension $F$ of $f$ over a polytope $P$ that represents the constraints, and then effectively rounding the fractional solution. Although this approach has been used quite successfully, it has been limited in some important ways. We overcome these limitations as follows. First, we give constant factor approximation algorithms to maximize $F$ over a downward-closed polytope $P$ described by an efficient separation oracle. Previously this was known only for monotone functions. For nonmonotone functions, a constant factor was ...

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call