Abstract

We study the five-parameter model, describing the process of nonlinear diffusion in an inhomogeneous medium in the presence of absorption, for which the differential equation of the model admits a continuous Lie group of transformations, acting on the set of its solutions. We found six submodels of the original model of nonlinear diffusion, with different symmetry properties. Of these six submodels, the five submodels with transient absorption, for which the absorption coefficient depends on time according to a power law, represent the greatest interest with a mathematical point of view and with the point of view of physical applications. For each of these nonlinear submodels, we obtained formulas for producing new solutions that contain arbitrary constants, and we found all invariant submodels. All essentially distinct invariant solutions describing these invariant submodels are found in an explicit form or are reduced to finding the solution of nonlinear integral equations. The presence of the arbitrary constants in the integral equations that determine these solutions provide new opportunities for analytical and numerical study of boundary value problems for the received submodels and, thus, for the original model of nonlinear diffusion. For the received invariant submodels, we studied diffusion processes for which at the initial moment of the time at a fixed point is specified as a concentration and its gradient or as a concentration and its velocity. Solving of boundary value problems describing these processes is reduced to the solving of nonlinear integral equations. We established the existence and uniqueness of solutions of these boundary value problems under some additional conditions. The obtained results can be used to study the diffusion of substances, diffusion of conduction electrons and other particles, diffusion of physical fields and propagation of heat in inhomogeneous medium, and also to study a turbulence (Leith model, differential approximation to wave turbulence).

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.