Abstract

Now that ALMA is reaching its full capabilities, observations of sub-mm emission line deep fields become feasible. We couple a semi-analytic model of galaxy formation with a radiative transfer code to make predictions for the luminosity function of CO J=1-0 up to CO J=6-5 and [CII] at redshifts z=0-6. We find that: 1) our model correctly reproduces the CO and [CII] emission of low- and high-redshift galaxies and reproduces the available constraints on the CO luminosity function at z<2.75; 2) we find that the CO and [CII] luminosity functions of galaxies increase from z = 6 to z = 4, remain relatively constant till z = 1 and rapidly decrease towards z = 0. The galaxies that are brightest in CO and [CII] are found at z~2; 3) the CO J=3-2 emission line is most favourable to study the CO luminosity and global H2 mass content of galaxies, because of its brightness and observability with currently available sub-mm and radio instruments; 4) the luminosity functions of high-J CO lines show stronger evolution than the luminosity functions of low-J CO lines; 5) our model barely reproduces the available constraints on the CO and [CII] luminosity function of galaxies at z>1.5 and the CO luminosity of individual galaxies at intermediate redshifts. We argue that this is driven by a lack of cold gas in galaxies at intermediate redshifts as predicted by cosmological simulations of galaxy formation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.