Abstract
Lead halide perovskite nanocrystals in a glass matrix are a promising platform for optoelectronic applications due to their excellent optical properties combined with outstanding stability against the environment. We reveal the potential of this system for spintronics by studying the electron spin properties of CsPb(Cl,Br)3 nanocrystals in a fluorophosphate glass matrix. Using optical spin orientation and spin depolarization with a radio frequency field, we measure longitudinal spin relaxation time, T1, reaching several hundreds of microseconds at low temperatures. This time T1 corresponds to a spin state with a small g factor, which we attribute to a weakly exchange-coupled electron-hole pair with antiparallel spins.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.