Abstract
We present the one-dimensional (1D) position and energy resolution results obtained by a γ-ray detector based on a single CsI(Tl) scintillator coupled to a linear array of silicon drift detectors (SDDs). The present prototype has been realized in order to investigate the basic performances of this new architecture in view of the realization of Anger cameras for 2D imaging in nuclear medicine, based on the use of SDDs instead of photomultiplier tubes. The SDD provides a high value of quantum efficiency to the scintillation light, typical of a silicon photodetector, and is moreover characterized by a lower value of electronics noise with respect to conventional silicon photodiodes, thanks to the low value of output capacitance. At 122 keV the present detector shows a position resolution better than 0.5 mm FWHM, and an energy resolution of about 13% FWHM. The experimental setup is described and the most significant experimental results are presented.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.