Abstract

We present accurately calibrated submillimeter atmospheric transmission spectra obtained with a Fourier-transform spectrometer at the Caltech Submillimeter Observatory on Mauna Kea, Hawaii. These measurements cover the 0.9-0.3-mm wavelength range and are the first in a series aimed at defining the terrestrial long-wave atmospheric transmission curve. The 4.1-km altitude of the Mauna Kea site provides access to extremely low zenith water-vapor columns, permitting atmospheric observations at frequencies well above those possible from sea level. We describe the calibration procedures, present our first well-calibrated transmission spectra, and compare our results with those of a single-layer atmospheric transmission model, AT. With an empirical best-fit continuum opacity term included, this simple single-layer model provides a remarkably good fit to the opacity data for H(2)O line profiles described by either van Vleck-Weisskopf or kinetic shapes.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call