Abstract

AbstractInfrared detection at optical communication wavelength is of great significance because of their diverse commercial and military communication applications. The layered Bi2Se3 with a narrow band gap of 0.3 eV is regarded as a promising candidate toward high‐performance terahertz to infrared applications. However, the controllable synthesis of large‐size ultrathin Bi2Se3 flakes remains a challenge owing to complex nucleation process and infrared telecommunication photodetectors based on Bi2Se3 flakes are rarely reported. Here, large size (submillimeter: 0.2–0.4 mm in lateral dimensions) and ultrathin (thickness: 3 nm to few nanometers) 2D Bi2Se3 flakes with high crystal quality are obtained by suppressing the nucleation density. More importantly, back‐gate field‐effect transistor based on Bi2Se3 flake exhibits an ultrahigh on/off current ratio of 106 and competitive mobility of 39.4 cm2 V−1 s−1. Moreover, excellent on/off ratio of 972.5, responsivity of 23.8 A W−1, and external quantum efficiency of 2035% are obtained from Bi2Se3‐based photodetector at 1456 nm in the E‐band of the telecommunication range. With controlled morphology and excellent photoresponse performance, the Bi2Se3 photodetector shows great potential in the optoelectronic field including communications, military, and remote sensing.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.