Abstract

BackgroundMalaria microscopy and rapid diagnostic tests are insensitive for very low-density parasitaemia. This insensitivity may lead to missed asymptomatic sub-microscopic parasitaemia, a potential reservoir for infection. Similarly, mixed infections and interactions between Plasmodium species may be missed. The objectives were first to develop a rapid and sensitive PCR-based diagnostic method to detect low parasitaemia and mixed infections, and then to investigate the epidemiological importance of sub-microscopic and mixed infections in Rattanakiri Province, Cambodia.MethodsA new malaria diagnostic method, using restriction fragment length polymorphism analysis of the cytochrome b genes of the four human Plasmodium species and denaturing high performance liquid chromatography, has been developed. The results of this RFLP-dHPLC method have been compared to 1) traditional nested PCR amplification of the 18S rRNA gene, 2) sequencing of the amplified fragments of the cytochrome b gene and 3) microscopy.Blood spots on filter paper and Giemsa-stained blood thick smears collected in 2001 from 1,356 inhabitants of eight villages of Rattanakiri Province have been analysed by the RFLP-dHPLC method and microscopy to assess the prevalence of sub-microscopic and mixed infections.ResultsThe sensitivity and specificity of the new RFLP-dHPLC was similar to that of the other molecular methods. The RFLP-dHPLC method was more sensitive and specific than microscopy, particularly for detecting low-level parasitaemia and mixed infections. In Rattanakiri Province, the prevalences of Plasmodium falciparum and Plasmodium vivax were approximately two-fold and three-fold higher, respectively, by RFLP-dHPLC (59% and 15%, respectively) than by microscopy (28% and 5%, respectively). In addition, Plasmodium ovale and Plasmodium malariae were never detected by microscopy, while they were detected by RFLP-dHPLC, in 11.2% and 1.3% of the blood samples, respectively. Moreover, the proportion of mixed infections detected by RFLP-dHPLC was higher (23%) than with microscopy (8%).ConclusionsThe rapid and sensitive molecular diagnosis method developed here could be considered for mass screening and ACT treatment of inhabitants of low-endemicity areas of Southeast Asia.

Highlights

  • Malaria microscopy and rapid diagnostic tests are insensitive for very low-density parasitaemia

  • In order to ensure the accuracy of this approach, the Restriction Fragment Length Polymorphism (RFLP)-Denaturing High Performance Liquid Chromatography (dHPLC) method was first validated against the standard PCR methods (Table 1)

  • The standard PCR approach identified eight mixed infections among 56 infections identified as P. falciparum mono-infections by dHPLC, while dHPLC identified four mixed infections among 48 infections identified as P. falciparum mono-infections by standard PCR

Read more

Summary

Introduction

Malaria microscopy and rapid diagnostic tests are insensitive for very low-density parasitaemia. This insensitivity may lead to missed asymptomatic sub-microscopic parasitaemia, a potential reservoir for infection. The objectives were first to develop a rapid and sensitive PCR-based diagnostic method to detect low parasitaemia and mixed infections, and to investigate the epidemiological importance of sub-microscopic and mixed infections in Rattanakiri Province, Cambodia. Asymptomatic sub-microscopic parasitaemia may serve as a reservoir for infection even when very efficient rapid diagnosis and treatment programmes have been implemented. Since individuals with asymptomatic parasitaemia will not be identified by early detection and treatment programmes, they may continue to serve as a source of infection for vector mosquitoes, complicating control measures. It is clear that PCR-based methods can detect sub-microscopic parasitaemia [1,2,3,4]; it remains to be determined how common such cases of parasitaemia are in the field under different ecological conditions and what effect they may have on transmission

Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call