Abstract
Fluorinated hybrid films composed of fluorinated polymethylsiloxane (PMHS–xFMA, x=6, 13, 17) and octavinyl-polyhedral oligomeric silsesquioxanes (OVPOSS) were prepared for icephobic applications. PMHS–xFMA with diverse fluorinated side groups were synthesized via hydrosilylation of polymethylhydrosiloxane (PMHS) with fluorinated methacrylate (xFMA), i.e., hexafluorobutyl methacrylate (6FMA), tridecafluorooctyl methacrylate (13FMA) and heptadecafluorodecyl methacrylate (17FMA), respectively. Characterizations of atomic force microscope and scanning electron microscope indicated that surfaces of the hybrid films consisted of submicron/nano-scaled OVPOSS aggregates, and the root-mean-square roughness (Sq) could vary from 42.6nm to 145.2nm with various OVPOSS content (5–20wt%). Wettability measurements of the prepared films demonstrated that the relatively longer fluorinated side groups in PMHS–17FMA were beneficial for decreasing surface energy and enhancing hydrophobic properties. However, the fluorinated hybrid films with PMHS–17FMA presented higher ice shear strengths due to the stronger interfacial interactions between the film surface and ice/water. The film prepared by PMHS–13FMA and 10wt% of OVPOSS with proper roughness (90.2nm) performed the lowest ice shear strength (188.2±13.4kPa) among all the samples. Dynamic water droplet impact measurement revealed that the rougher surface with the mass fraction of OVPOSS more than 10wt% and Sq larger than 90nm could repel water droplets. The submicron/nano-structured surface of PMHS–xFMA and OVPOSS was expected for anti-icing applications.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.