Abstract

Submicrometer p-channel transistors have been fabricated using thin (150 A) gate oxide and p+ polysilicon gates. Favorable device characteristics have been achieved for L(eff) as low as 0.4 µm. P+ gate was formed under different processing conditions. Data showed negligible boron penetration through the thin oxide. Two-dimensional simulations demonstrated the advantages of p+ poly in reducing short channel effects. Experimental results from three device lots with different processing conditions showed good subthreshold slope and low leakage current, even for low threshold voltages. V T versus L(eff) showed much less threshold drop than was seen using n+ poly. Device characteristics were robust with respect to processing variations.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.