Abstract

Template‐free self‐assembly synthesis of nano‐sized metal‐organic frameworks (MOFs) is of particular interest in MOF research since organized nanostructures possessing distinctive properties are useful for many advanced applications. In this work, the facile room temperature synthesis of robust submicrometer‐sized ZIF‐71 crystals with different particle sizes (140, 290, or 430 nm), having a high permanent microporosity (SBET = 827 cm2 g−1) and synthesis yield up to 80% based on Zn on a gram‐scale, is reported. These small ZIF‐71 particles are ideal filler for the fabrication of thinner and homogeneous polydimethylsiloxane (PDMS) based mixed matrix membranes (MMMs) with excellent filler dispersion and filler‐polymer adhesion at high loading up to 40 wt%, as confirmed by scanning electron microscopy. Pervaporation tests using these submicrometer‐sized ZIF‐71 filled MMMs show significant improvement for bioethanol recovery. Interesting phenomena of i) reversible ethanol‐ethanol hydrogen interaction in the ethanol liquid‐phase and ii) irreversible hydrogen interaction of ethanol and –Cl functional group in the α‐cages and octagonal prismatic cages of ZIF‐71 in ethanol vapor‐phase are discovered for the first time by a Fourier transform infrared spectroscopy (FTIR) study. In full agreement with molecular simulation results, these explain fundamentally the ZIF‐71 filled MMMs pervaporation performance.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call