Abstract

Biofiltration system is a widely used stormwater treatment option that is effective in removing heavy metals. The concentration and distribution of heavy metal fractions in biofiltration filter media, as well as the microbiota composition affected by the design parameters, are relatively novel concepts that require further research. A laboratory-scale column study was conducted to investigate the microbial community and the fractionation of heavy metals (Pb, Cu, Cr, and Cd) extracted from filter media samples, subjected to the presence of vegetation, submerged zone (SZ), and major environmental parameters (pH, water content). Sequential extractions revealed that, compared to the three other fractions (exchangeable fraction, reducible fraction, and oxidizable fraction), the residual fraction was the most represented for each metal (41 – 82 %). As a result, vegetation was found to reduce pH value, and significantly decrease the concentration of the exchangeable fraction of Pb in the middle layer, and the oxidizable fraction of Pb, Cu, Cd, and Cr in the middle and bottom layers (p < 0.05). The formation of an anoxic environment by submerged zone settlements resulted in a significant decrease in the concentration of reducible fractions and a significant increase in the concentration of oxidizable fractions for four heavy metals (p < 0.05). In addition, the analysis of the microbiota showed that the diversity and richness of microorganisms increased in the presence of SZ and plants. The dominant phylum in biofiltration was Proteobacteria, followed by Firmicutes, Bacteroidetes, Acidobacteria, and Actinobacteria as major phyla. Heavy metal fractions could regulate the structure of microbial communities in biofiltration. The findings of this study would enrich our understanding of the improvement of multi-metal-contaminated runoff treatment and highlight the impact of design parameters and heavy metal fractionation on microbial community structure in the biofiltration system.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call