Abstract

Liquid jet mixing is a common practice in industry when mechanical mixing becomes unfeasible due to the scale of mixing vessel required. The present study employed a flow visualization technique to investigate the agitation of a non-Newtonian fluid (0.5 wt% xanthan gum solution) using a submerged recirculating jet. Building on the work already published by the authors, the present study seeks to identify how the mixing performance is influenced by two factors: namely, jet-nozzle orientation (upward and downward facing) and mixing vessel aspect ratio (1: 1 and 3: 1). It was found that the nozzle orientation played a much larger role in the 1: 1 setup compared to the 3: 1 setup. The best performing setup for the 0.5 wt% xanthan gum solution was a 1: 1 tank with an upward facing nozzle. It is postulated that this is because the suction in this setup has a net positive effect on the mixing performance; whereas, for other setups, the interplay between jet and suction has a deleterious effect.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.