Abstract

Aquatic and wetland systems are widely used for landscapes and water regeneration. Microbiomes and submerged macrophytes (hydrophytes) play essential roles in conversions of organic and inorganic compounds in those ecosystems. The systems were extensively investigated for microbial diversities and compositions. However, little is known about how hydrophytes recruited diverse microbiota and affected functional zonation in aquatic systems. To address this issue, epiphytic leaf and root, sediment, and surrounding water samples were collected from the dragon-shape aquatic system in Beijing Olympic Park. Metagenomic DNAs were extracted and subjected to sequencing. Results showed that epiphytic leaf and root microbiomes and metabolic marker genes were remarkably different from that of surrounding environment. Twenty indicator bacterial genera for epiphytic microbiomes were identified and 50 metabolic marker genes were applied to evaluate the function of epiphytic leaf and root, water, and sediment microbiomes. Co-occurrence analysis revealed highly modularized pattern of metabolic marker genes and indicator bacterial genera related to metabolic functions. These results suggested that hydrophytes shaped microbiomes and drove functional zonation in aquatic systems. KEY POINTS: • Microbiomes of hydrophytes and their surrounding environments were investigated. • Twenty indicator bacterial genera highly specific to epiphytic biofilms were identified. • Epiphytes recruited unique microbiomes and drove functional zonation in aquatic systems.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call