Abstract
Glow discharge polymerization is not well understood due to the rapid/complex reaction at the plasma/gas precursor interface. Plasma reaction in a submerged condition allows post-plasma-polymerization, leading to further polymer growth and thus a stable structure. Electron collision with acetonitrile at the interface initiates the formation of radical monomers, which undergoes further rearrangement to form low-molecular (LM) nitrogen polymers (NPs). The radical-rich LM NPs go through further polymerization, forming stable high-molecular (HM) NPs (as determined using liquid chromatography/mass spectrometry). LM NPs absorb light at a wavelength of 270 nm (λ max) whereas HM NPs show absorption at 420 nm (λ max), as determined from ultraviolet-visible absorption spectra. The fluorescence spectra of HM NPs show characteristic emission at 430 nm, which indicates the presence of nitrogen functional groups with external conjugation. The proposed structure of HM NPs is verified with different analytical instruments.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.