Abstract

Abstract A submerged fluid-filled circular cylindrical shell subjected to a shock wave propagating in the external fluid is considered. The study focuses on a number of acoustic and structural effects taking place during the interaction. Specifically, the influence of the acoustic phenomena in the fluid on the stress–strain state of the shell is analysed using two different visualization techniques. The effect that the parameters of the shell have on the internal acoustic field is addressed as well, and the ‘shock transparency’ of various shells is discussed. Special attention is paid to the analysis of the contribution of the terms in the shell equations representing bending stiffness, and the limits of applicability of the membrane theory of thin shells are discussed in the fluid–structure interaction context. The possibility of cavitation in the internal fluid is investigated, and the effect that cavitation could have on the structural dynamics of the shell is discussed. The present paper is a follow-up of the author's earlier study of the interaction between fluid-filled cylindrical shells and external shock waves.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.