Abstract

The optimization of submerged culture of the culinary-medicinal golden oyster mushroom, Pleurotus citrinopileatus, was studied using a one-factor-at-a-time, two-stage stimulation and central composite rotatable design to produce mycelia with high ergothioneine content. The optimal culture conditions for mycelia harvested at day 22 were a temperature of 25°C, an inoculation ratio of 5%, 2% glucose, 0.5% yeast extract, and adjustment of the initial pH value to 10. The biomass and ergothioneine content were 8.28 g/L and 10.65 mg/g dry weight (dw), respectively. The addition of an amino acid precursor increased the ergothioneine content of mycelia; cysteine was the most effective. In addition, the results obtained from central composite rotatable design showed that the recommended combination for cysteine, histidine, and methionine was 8, 4, and 0.5 mmol/L, respectively. The predicted ergothioneine content was 13.90 mg/g dw, whereas the experimental maximal ergothioneine content was 14.57 mg/g dw. With the addition of complex precursors and under optimal culture conditions, mycelia harvested at days 16-20 had higher ergothioneine content. Accordingly, the information obtained could be used to produce mycelia with high ergothioneine content.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call