Abstract

[Formula: see text]-projective structures are analogues of projective structures in the almost complex setting. The maximal dimension of the Lie algebra of [Formula: see text]-projective symmetries of a complex connection on an almost complex manifold of [Formula: see text]-dimension [Formula: see text] is classically known to be [Formula: see text]. We prove that the submaximal dimension is equal to [Formula: see text]. If the complex connection is minimal (encoded as a normal parabolic geometry), the harmonic curvature of the [Formula: see text]-projective structure has three components and we specify the submaximal symmetry dimensions and the corresponding geometric models for each of these three pure curvature types. If the connection is non-minimal, we introduce a modified normalization condition on the parabolic geometry and use this to resolve the symmetry gap problem. We prove that the submaximal symmetry dimension in the class of Levi-Civita connections for pseudo-Kähler metrics is [Formula: see text], and specializing to the Kähler case, we obtain [Formula: see text]. This resolves the symmetry gap problem for metrizable [Formula: see text]-projective structures.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call