Abstract

During the late Miocene (~5.5 Ma), a large-scale submarine slide with an area of approximately 18000 km2 and a maximum thickness of 930 m formed in the deep-water region of the Qiongdongnan Basin. The large-scale submarine slide has obvious features in seismic profile, with normal faults in the proximal region, escarpments at the lateral boundary, and a pronounced shear surface at the base. The internal seismic reflections are chaotic and enclosed by parallel and sub-parallel seismic events. The main direction of sediment transport was from south to north and the main sediment source was the southern region of the Qiongdongnan Basin, which is located in the east of the Indo-China Peninsula and the north of the Guangle uplift. In this region, late Miocene strike-slip reversal of the Red River Fault, uplift and increased erosion of the Indo-China Peninsula, and an abrupt rise in the rate of deposition in the western part of the South China Sea provided the basic conditions and triggering mechanism for the large-scale submarine slide. The discovery of the large-scale submarine slide provides sedimentological evidence for the tectonic event of late Miocene strike-slip reversal of the Red River Fault. It can also be inferred that the greatest tectonic activity during the process of the Red River Fault reversal occurred at ~5.5 Ma from the age of top surface of the submarine slide.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call